PRODUCTS VIDEO

フラックスの製錬DC電動炉
電磁攪拌および溶融運動状態
金鉱山の製錬DC水没したアーク炉
ステンレス鋼のリメルティングDC電動炉
レアメタルインジウム製錬DC電動炉
鋼鉄製のアルミニウム生産ライン
x

WHY CHOOSE US?

省エネ|安定した|信頼性のある

  • エネルギー保全

    15%の電力を節約します
  • 高効率

    生産の増加
  • オートメーション

    高度の自動化
  • 安全

    高い安全係数
  • 利益

    高い収益率

PARTNER

Uniting expertise for exceptional bending solutions

Zirconia Corundum Smelting DC Electric Arc Furnace
赤泥の鉄製造DC水没したアーク炉
カルシウムアルミン酸塩DC電動炉
ベリリウム銅合金製錬DC電動炉

Younengdeについて

DC電気弧炉、DC水没アーク炉

10 + Years
Dedicated to the development and production of bending machine for more than 10 years
30 + R&D
R&D patent certificate
30 + People
Professional technicians
20 + Teams
Professional R&D Team
50 + Client
Customized Solution Customers

ニュース

DCアーク炉、DC水没したアーク炉、製錬プロセスに関する知識の共有。

もっと見る +
二重電極DC電気弧炉/水没したアーク炉の特性
機器の特性: 1.電力消費量は、AC炉の消費電力よりも10%〜15 %少ないです。 2.グラファイト電極の消費量は、AC炉の消費量よりも40%少ない。 3. AC炉と比較して、リアクティブ電力補償装置の投資を排除します。 4. PLC自動制御、生産リズムは安定して信頼できます。 5.製錬プロセスでは、プロセスの要件に応じて、シャットダウンなしで、電流は変化しないままであり、電圧レベルが自由に増加または減少し、アークの長さが自由に変化します。 。また、電圧と電力を任意に調整することもできます。 6.電極は、製錬プロセスで自由に極性を変化させる可能性があり、製錬時間が大幅に短くなります。 7.底部アノードの深刻な熱効果のために、単一の電極DC炉の底部は簡単に燃え尽きています。二重電極DC炉には底部のアノード効果がなく、問題が完全に解決されます。 8. DC電源メインコントロールボードには、光電アイソレーションの機能があり、生産サイトの強力な磁場を効果的に回避して、生産プロセスにおける制御回路の安定性を妨げる可能性があります。ボードには、過電圧、過電流、高温保護の機能もあり、機器への短絡による損傷を効果的に回避できます。 9.DCプラズマ融解装置電極中心温度は高く、熱濃度、埋もれが容易な電極、炉の底は容易ではなく、高融点生成物により溶けた方が適しています。 10.製錬プロセスでは、溶融物中の金属イオンは、電気分解のために負の電極の周りに集中し、製品の収量と純度を改善します。 。 11. DC炉の現在の方向と電磁場方向は変更されていません。磁場によって駆動されると、溶融スラリーは常に一方向に循環し、電磁攪拌を形成するため、材料が死んだ角で溶けるように、製品の品質が高く、収量が高くなります。ただし、AC炉の現在の方向は毎秒50回変化し、磁場の方向は混oticとしているため、電磁攪拌機能を実現することが不可能になります。 12.ノイズレベルは、AC炉より10〜20 d B低いです。 13. DC炉のグラファイト電極消費量は、AC炉のグラファリット電極消費量よりも40%低い。 14.炉の壁の耐火性には、長いサービスの寿命があります。 AC炉のアーク光とグラファイト電極の間の角度は45°で、炉の壁にぶつかるのは簡単で、炉の壁の耐衝撃性が損傷します。 DC炉のアークライトとグラファイト電極の間の角度は30°であり、炉の壁にぶつかるのは簡単ではありません。 15.製錬プロセスで事故が発生し、しばらくの間停電が発生すると、溶融液の表面に断熱硬性砲弾が形成されます。単一の電極DC炉がこの状況に遭遇した場合、機器は製錬を続けることができないため、解体するだけです。この状況に直面して、二重電極DC炉は、電極の底にあるコークスなどのアークストライキ材料を追加することにより、再びアークの製錬を開始できます。
  • 02
    2024-03
    会社概要
    Anyang Younengde Electric Co。、Ltdは、 DCプラズマ融解装置、高出力DC電源、固形廃棄物/危険廃棄物非毒性処理装置の研究開発、設計、製造、設置、および試運転に特化したハイテク企業です。 。当社は、 DCプラズマ融解装置に関する35の新しい実用的な技術特許を取得しています。機器容量は50kvaから30000kvaです。生鉱石、触媒、工業用の固形廃棄物から希少で貴重な金属を抽出して濃縮するプロセスは、高収量で成熟しています。メタリックシリコンと75#フェロシリコンの収量は、シリカの製錬において高くなっています。廃棄回路基板が直接溶けた場合、非鉄金属の回収率は高くなります。カルシウムアルミン酸塩の製錬プロセスは成熟しています。当社は、国内外の多くの企業やユニットとの専門的な協力と技術交流を実施し、高品質の製品を提供しています。製品ケースリスト 中国科学アカデミーの整備士(技術サービス協力)蘇州研究所の研究所(技術サービス協力) Anyang Longxin Silicon Industry Co.、Ltd( M Etallic Silicon Powder Remalting DC Furnace) Hubei Boxin New Materials Technology Co.、Ltd (メタリックシリコン製錬DC炉) Danjiangkou huiyuan hejin Co.、Ltd(メタリックシリコン製錬DC炉)北京セントラルアイアン&スチールリサーチインスティテュート(スチール炉) Dalian Wilte Steel Co.、Ltd(Vanadium Titanium Iron Experimental DC Furnace) Henan Liyuan Group Co.、Ltd (Ferroalloy Furnace) Wu'an Yuhua Steel Group Co.、Ltd (スチールアルミニウム合金DC炉) Tangshan Ganglu Steel Group Co.、Ltd (スチールアルミニウム合金DC炉) Heil Ongjiang Jianghui Huanbao Technology、Ltd( Ferronickel Alloy DC Furnace) Guangdong Guangqing Jinshu Technology Co.、Ltd( Ferronickel Alloy DC Furnace)河南省ズー氏( M Ulti機能DC炉) Rizhao Zhenghong Yanchuang New Materials Co.、Ltd(Ferronickel Alloy DC Furnace) Fujian Anxi Ansheng Mining Co.、Ltd( M Ulti-Function DC Furnace) liaoyangshi taizih qui boyi zhuzaochang(廃棄物亜鉛dc炉) Chongqing Saiyadi Energy Technology Co.、Ltd (Red Mud Ironmaking DC Furnace) liaoning fuyun耐火株式会社(カルシウムアルミナートDC炉) Huolinguole Gerun Huanbao Technology Co.、Ltd (Calcium aluminate DC炉) Huolinguole Lifenglvye Co.、Ltd(カルシウムアルミナートDC炉) Dalian Yishun LVSE Technology Co.、Ltd (Calcium aluminate DC炉) Danjiangkoushi Wanji Abrasive Materials Co.、Ltd (Corundum DC Furnace ) Jiangsu nantong teynocel Co.、Ltd (ベリリウム銅合金DC炉) Jiangsu nantong teynocel Co.、Ltd (ベリリウム銅合金DC炉)インドネシアPt Metalindo Makmur Mandiri (テストDC炉) Korea HF Metal Trade Co。、Ltd (PCB DC Furnace)広東造母氏フー氏(PCB DC炉) Guizhou Yixiang Kuangye(グループ)Zhenyuan Runda Co.、Ltd(貴金属DC炉) Guangxi Zhongwu Kuangye Co.、Ltd(貴金属DC炉) Longyan Changyu New Material Technology Co.、Ltd(貴金属DC炉) Hubei Huanggang Zhao氏(貴金属DC炉) Henan Yihui Jinshu Technology Co.、Ltd ( Three Way Catalytic Shelting DC Furnace ) Shanghai Yudun Xincailiao Technology Co.、Ltd(Three Way Catalytic Shelting DC Furnace ) Zhejiang Qike Shengwu Technology Co.、Ltd(Three Way Catalytic Shelting DC Furnace ) Zhejiang Metallurgical Research Institute (Three Way触媒製錬DC炉) Hubei Zhongyuan Chucheng Environmental Protection Technology Co.、Ltd (Three Way Catalytic Shelting DC Furnace ) Huaian Zhongun Environmental Protection Technology Co.、Ltd (3ウェイ触媒製錬DC炉の2セット) M Inshan Huanneng Hi-Tech Gufen Co.、Ltd(Lead亜鉛鉱石テストDC炉) Zhejiang Teli Renewable Resources Co.、Ltd(銅スラッジ回復DC炉) Keyuan Environmental Equipment Co.、Ltd (危険な廃棄物処理DC炉) Guanyinshan廃棄物焼却ステーション( Ash Harbless Dispural DC Furnace ) Chaozhou Dongsheng Environmental Protection Technology Co.、Ltd ( R ockウールDC炉) Yongxing Ch Ang Long Environmental Protection Technology Co.、Ltd (Tin Slag Shelting and Recycling DC Furnace) Kunming Dingbang Technology Co.、Ltd ( SMELTING DC Furnace)
Process Description of Medium And Low Carbon Ferromanganese Production by DC Refining Electric Arc Furnace
The relatively mature process for producing medium and low carbon ferromanganese is the electrosilicothermal method. The production of medium and low carbon ferromanganese by electro silicothermal method is achieved by reducing manganese ore with manganese silicon alloy in a DC refining electric furnace, which is currently the main method for smelting medium and low carbon ferromanganese. The carbon content of the medium and low carbon ferromanganese produced depends on the carbon content of the manganese silicon alloy, with very little carbon entering the alloy from the electrodes and raw materials. Due to the different states of furnace materials, they are divided into two forms: hot charging and cold charging. The hot charging method is as follows: the silicon manganese iron produced in the previous workshop does not need to be cast, but can be directly transported to the refining workshop of this project using a tractor, and then poured into the refining electric furnace using a crane to start producing medium and low carbon manganese iron. The cold charging method is to crush the finished block shaped silicon manganese products that have been cast, add them to the refining electric furnace of this project, melt them first, and then smelt them. If the owner has already built a manganese silicon electric furnace, it is recommended to produce it using hot charging method. The electricity consumption for smelting medium and low carbon manganese iron products is less than 580kWh/t; If there is no manganese silicon electric furnace, cold charging can only be used, and the power consumption of medium carbon manganese iron products is about 1800kWh/t. Both production methods use electric silicon thermal refining electric furnaces. Refining electric furnaces are intermittent production, and the smelting process is divided into several stages: remelting, arc ignition, feeding, melting, refining, and tapping. Based on the advanced experience in domestic smelting of medium and low carbon ferromanganese, this project adopts two 6300KVA refining furnaces, with a daily output of 55-60 tons for a single electric furnace and 110-120 tons for two electric furnaces; The annual production of two electric furnaces exceeds 36000 tons, which matches the annual production of 36000 tons of manganese silicon project.
  • 22
    2024-03
    Introduction to Tungsten Iron Smelting in DC Submerged Arc Furnace
    The production of tungsten iron using the iron extraction method usually takes 8 hours per furnace, and the furnace type is an open type electric furnace, because special iron spoons are needed to remove molten iron from the furnace. Firstly, add steel shavings and used waste spoons to the furnace and melt them with electricity. Then add tungsten concentrate and reducing agent. Additives should be added multiple times and in small quantities. Take a sample for testing after about 4 hours, and start taking iron after passing the test. When extracting iron, use a dedicated iron digger to extract tungsten iron from the furnace. After removing some of the molten iron, continue to add materials for smelting. Do not take too much iron each time to avoid furnace leakage. Stop feeding before the end of iron extraction. Then enter the next stage of impoverishment. The impoverishment period requires the use of coke and ferrosilicon to reduce WO3 in the slag and improve the recovery rate of tungsten. Subsequently, the slag is discharged and enters the next cycle.   The process of producing ferrotungsten using the block method is relatively simple. The furnace body is in a detachable form, with a structure similar to that of a furnace for producing fused magnesia sand. Tungsten concentrate and reducing agent are added together to the furnace, and the generated tungsten iron deposits into a block in the furnace. Then, the power is cut off and the furnace body is cooled. Then, the furnace body is disassembled and the tungsten iron ingots are taken out.
  • 13
    2024-03
    The influencing factors of silicon thermal reduction method for smelting rare earth ferrosilicon alloy in DC electric arc furnace
    For the production of rare earth ferrosilicon alloy by DC electric arc furnace silicothermal method, years of scientific research and production practice have proven that the alkalinity of ingredients, slag to agent ratio, temperature, and stirring strength have a decisive impact on the grade and yield of rare earth alloy. The alkalinity of ingredients, slag to agent ratio, reduction temperature, and stirring strength are commonly referred to as the four elements in the smelting process of rare earth ferrosilicon alloys. 1. Alkalinity of ingredients Rare earth minerals such as fluorocarbon cerium and monazite are transformed into spinel and cerium calcium silicate during the production of rare earth rich slag. Only by reacting with lime at high temperatures (1240-1300 ℃) can rare earth oxides be free in the form of cerium spinel and reduced by silicon or calcium silicate. So lime is the key to promoting the decomposition of rare earth minerals. After adding the reducing agent ferrosilicon, cerium spinel is reduced to rare earth silicides, and lime reacts with the reaction product silica to form dicalcium silicate, tricalcium silicate, etc., reducing the activity of silica and promoting rare earth reduction. However, excessive alkalinity reduces the concentration of rare earth elements in the slag, while also making the slag sticky, affecting the diffusion of reactants and hindering the progress of reduction reactions. 2. Slag to agent ratio The ratio of rare earth rich slag in a DC electric arc furnace to the mass of silicon iron used is called the slag agent ratio. The slag to agent ratio is an important data in ingredient calculation. The experiment conducted by the Shanghai Institute of Metallurgy shows that under the same operating conditions with a selected ingredient alkalinity of 4.0 and a temperature of 1200-1300 ℃, smelting low-grade alloys yields high rare earth elements, while smelting high-grade alloys yields low rare earth elements. 3. Reduction temperature Silicon thermal reduction method is used to prepare rare earth silicon iron alloy. When the reduction temperature is high, the alkalinity of the slag is low, which is conducive to the diffusion of reaction ions, so the rare earth content in the alloy reaches its peak quickly. However, if the temperature is too high, the oxidation rate of the alloy accelerates, making it difficult to control the alloy composition during the smelting process. The oxidized rare earths in the alloy return to the slag, causing a decrease in the alloy grade. It is generally believed that the most suitable reduction temperature is 1300~1350 ℃. If the reduction temperature is raised to 1400-1450 ℃, there is a tendency for the rare earth content in the secondary slag to increase and the rare earth recovery rate to decrease. 4. Mixing intensity The reaction between rare earth slag and liquid ferrosilicon belongs to liquid-liquid reaction, and the diffusion of reactants is a limiting factor in the reaction rate. The liquid-liquid reaction can only be carried out at the interface, and stirring can make the reducing agent ferrosilicon fully contact with the reduced material rare earth slag, expand the contact surface, increase the collision of reactants and the opportunity for products to leave, strengthen the reaction, and reduce smelting time.
  • 13
    2024-03
    One-step carbon thermal reduction method for smelting rare earth silicide alloys in DC submerged arc furnace
    In the process of smelting rare earth intermediate alloys in a DC submerged arc furnace, the quality of the furnace material includes its chemical composition, physical and mechanical properties, particle size composition, which plays an important role in the furnace condition, electrical energy consumption, and product quality. The new process of one-step carbon thermal reduction for smelting rare earth silicide alloys is carried out in a 4150kVA DC submerged arc furnace. 1. Raw materials (1) Rare earth raw materials: The rare earth raw materials used in this process are fluorocarbon cerium type rare earth concentrates, with the main chemical components being: ReO>5% BaO<8%. The particle size of rare earth concentrate is generally less than 0.5mm for gravity ore and 200 mesh for flotation ore. From the performance of pelletizing, flotation ore is better. (2) Silicon stone: In principle, the silicon stone used in the smelting of ferrosilicon alloys can be used as the silicon containing raw material for this process, with SiO2>98%, Al2O3<0.5%, and P2O5<0.02%. The block size of silica is 25-80mm. (3) Carbon reducing agent: Various types of coke (such as metallurgical coke, coal coke, petroleum coke, etc.), charcoal, wood blocks, etc. can be used as carbon reducing agents for this process. Considering the needs of the smelting process, it is necessary to use carbon reducing agents with good reactivity and high specific resistance, while also considering production costs. In actual production, it is often used in combination. ① Coke: Metallurgical coke has a high fixed carbon content, high coke block strength, and low volatile content, but its reactivity is not as good as gas coke, and its specific resistance is low. This process prioritizes the selection of coke particles under the sieve, with a particle size of 1-25mm, of which 3-8mm accounts for more than half. The fixed carbon content is greater than 80%. Gas coke is actually a type of semi coke with good reactivity, high specific resistance, but relatively high volatile content. The fixed carbon content is generally around 78% and the strength is relatively low, but it is not affected when used in a DC submerged arc furnace. ② Charcoal and wooden blocks: The use of charcoal is mainly to adjust the permeability of the furnace charge. Use hardwood charcoal with a block size of 3-50mm, and the quantity of less than 10mm should not exceed 20%. The wooden blocks are made from wood processing plant scraps or dry branches, preferably hardwood. The block size is 20-60mm, and the fixed carbon content is generally>26%. 2. Technological process The main advantages of carbon thermal reduction method are that it can be directly reduced in one step, the reducing agent is cheap, the energy utilization is reasonable, and it can be continuously produced in large quantities. The silicon thermal reduction method has a fast reaction rate, and the product is easy to adjust and control, making it suitable for small-scale production of multiple varieties. When the carbon thermal method achieves error free operation, the rare earth recovery rate is above 90%. The silicon thermal method has added a secondary recovery process, and its recovery rate can only reach 80%. The production of rare earth intermediate alloys by silicon thermal method consumes more than 30% of the corresponding raw materials and electrical energy compared to the carbon thermal method.
  • 12
    2024-03
    Introduction to the process of smelting high carbon ferrochrome in a DC submerged arc furnace
    Chromium iron is divided into high carbon chromium iron, medium carbon chromium iron, low carbon chromium iron, and micro carbon chromium iron according to their carbon content. The carbon content of high carbon ferrochrome is 4-8%, the carbon content of medium carbon ferrochrome is 0.4%, the carbon content of low-carbon ferrochrome is 0.15-0.50%, and the carbon content of low-carbon ferrochrome is 0.06% Chromium iron is mainly used as an important alloy additive in steelmaking, which was previously added in the later stage of steelmaking refining. Now, the focus of chromium iron production is on refining carbon chromium iron. The main uses of high carbon ferrochrome include: (1) Used as an alloying agent for ball steel, tool steel, and high-speed steel with high carbon content, to improve the hardenability of steel, increase its wear resistance and hardness; (2) Used as an additive for cast iron to improve its wear resistance and hardness, while also giving it good heat resistance; (3) Used as a chromium containing raw material for the production of silicon chromium alloys and medium, low, and micro carbon ferrochrome using slag free method; (4) Used as a chromium containing raw material for electrolytic production of metallic chromium; (5) Used as a raw material for oxygen blowing smelting of stainless steel. The smelting methods of high carbon ferrochrome include blast furnace method, electric furnace method, plasma furnace method, etc. The use of blast furnaces can only produce special pig iron with a chromium content of about 30%. At present, high carbon ferrochrome with high chromium content is mostly smelted using the electric furnace method in a DC submerged arc furnace. The basic principle of electric furnace smelting high carbon ferrochrome is to reduce chromium and iron oxides in chromium ore with carbon. The starting temperature for carbon reduction of chromium oxide to produce Cr2C2 is 1373K, the starting temperature for the reaction of producing Cr7C3 is 1403K, and the starting temperature for the reaction of reducing to produce chromium is 1523K. Therefore, during carbon reduction of chromium ore, chromium carbides are obtained, not metallic chromium. The carbon content in ferrochrome depends on the reaction temperature. It is easier to generate carbides with high carbon content than carbides with low carbon content. The raw materials for smelting high carbon ferrochrome include chromium ore, coke, and silica. In chromium ore, Cr2O3 ≥ 40%, Cr2O3/∑ FeO ≥ 2.5, S<0.05%, P<0.7%, MgO and Al2O3 content should not be too high, with a particle size of 10-70mm. Coke requires a fixed carbon content of no less than 84%, an ash content of less than 15%, S<0.6%, and a particle size of 3-20mm. Silicone requires a content of SiO2 ≥ 97%, Al2O3 ≤ 1.0%, good thermal stability, no soil, and a particle size of 20-80mm.

お問い合わせ

Eメール

Online consultation, we will get back to you as soon as possible

* * *
*

HOT PRODUCTS

もっと見る

COMPANY CERTIFICATE

ANYANG YOUNENGDE ELECTRIC CO.,LTD

Eメール : 13949514533@163.com

ADD. : Northwest corner of the intersection of Huaxiang Road and Angang Avenue, Anyang, Henan China

Copyright ©2024 ANYANG YOUNENGDE ELECTRIC CO.,LTD著作権を有します Powered by
We will contact you immediately

Fill in more information so that we can get in touch with you faster

Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.

送信